Osmoprotection by pipecolic acid in Sinorhizobium meliloti: specific effects of D and L isomers.
نویسندگان
چکیده
DL-Pipecolic acid (DL-PIP) promotes growth restoration of Sinorhizobium meliloti cells facing inhibitory hyperosmolarity. Surprisingly, D and L isomers of this imino acid supplied separately were not effective. The uptake of L-PIP was significantly favored in the presence of the D isomer and by a hyperosmotic stress. Chromatographic analysis of the intracellular solutes showed that stressed cells did not accumulate radiolabeled L-PIP. Rather, it participates in the synthesis of the main endogenous osmolytes (glutamate and the dipeptide N-acetylglutaminylglutamine amide) during the lag phase, thus providing a means for the stressed cells to recover the osmotic balance. (13)C nuclear magnetic resonance analysis was used to determine the fate of D-PIP taken into the cells. In the absence of L-PIP, the imported D isomer was readily degraded. Supplied together with its L isomer, D-PIP was accumulated temporarily and thus might contribute together with the endogenous osmolytes to enhance the internal osmotic strength. Furthermore, it started to disappear from the cytosol when the L isomer was no longer available in the culture medium (during the late exponential phase of growth). Together, these results show an uncommon mechanism of protection of osmotically stressed cells of S. meliloti. It was proved, for the first time, that the presence of the two isomers of the same molecule is necessary for it to manifest an osmoprotective activity. Indeed, D-PIP seems to play a major role in cellular osmoadaptation through both its own accumulation and improvement of the utilization of the L isomer as an immediate precursor of endogenous osmolytes.
منابع مشابه
Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumef...
متن کاملCharacterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highl...
متن کاملتأثیر شوری بر برخی شاخصهای رشد و پروتئین کل یونجه تلقیح شده با جدایههای باکتری Sinorhizobium meliloti در شرایط گلخانه
This greenhouse experiment was carried out to evaluate the effects of salinity and bacterial inoculation on some growth indices and total protein content of alfalfa (Medicago sativa) using a factorial completely randomized design with three replications. The effect of three salinity levels (0, 6 and 12 dS/m) induced by a mixture of NaCl, CaCl2 and MgCl2 salts on growth indices and protein conte...
متن کاملComparison of Lactic Acid Isomers Produced by Fungal and Bacterial Strains
Many organisms produce lactic acid by fermentation, but most industrially important strains are from the genus Lactobacillus and Rhizopus oryzae. L(+)-Lactic acid is the only optical isomer for use in pharmaceutical and food industries because human body is only adapted to assimilate this form. In this research, six strains of Lactobacillus and four strains of R. oryzae (known as high producer)...
متن کاملIsolation, Cloning and Sequence Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase Gene from Native Sinorhizobium meliloti
Background: Many plant growth-promoting bacteria including Rhizobia contain the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that can leave ACC, and thereby lower the level of ethylene in stressed plants. Drought and salinity are the most common environmental stress factors for plants in Iran. Objectives: The main aim of this research was development of bio-fertilizers containing A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 66 6 شماره
صفحات -
تاریخ انتشار 2000